Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403968, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637949

RESUMO

Fluorescence sensing is crucial to study biological processes and diagnose diseases, especially in the second near-infrared (NIR-II) window with reduces background signals. However, it's still a great challenge to construct "off-on" sensors when the sensing wavelength extends into the second near-infrared (NIR-II) region to obtain higher imaging contrast, mainly due to the difficult synthesis of spectral overlapped quencher. Here, we present a new fluorescence quenching strategy, which utilizes steric hindrance quenchers (SHQ) to tune the molecular packing state of fluorophores and suppress the emission signal. Density functional theory (DFT) calculations further reveal that large SHQ can competitively packing with fluorophores and prevent their self-aggregation. Based on this quenching mechanism, a novel activatable "off-on" sensing method is achieved via bio-analyte responsive invalidation of SHQ, namely Steric Hindrance Invalidation geNerated Emission (SHINE) strategy. As a proof of concept, the ClO- sensitive SHQ lead to the bright NIR-II signal release in epileptic mouse hippocampus under the skull and high photon scattering brain tissue, providing the real-time visualization of ClO- generation process in living epileptic mice.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124250, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38603958

RESUMO

Hydrogen sulfide (H2S), as a biomarker signaling gas, is not only susceptible to food spoilage, but also plays a key function in many biological processes. In this work, an activated near infrared (NIR) H2S fluorescent probe was designed and synthesized with quinoline-conjugated Rhodols dye as fluorophore skeleton and a dinitrophenyl group as the responsive moiety. Due to the quenching effect of dinitrophenyl group and the closed-loop structure of Rhodols fluorophore, probe itself has a very weak absorption and fluorescence background signal. After the H2S-induced thiolysis reaction, the probe exhibits a remarkable colormetric change and NIR fluorescent enhancement response at 716 nm with large Stokes shift (116 nm), and possesses high sensing selectivity and sensitivity with a low detection limits of 330 nM. The response mechanism is systematically characterized by 1H NMR, MS and DFT calculations. The colorimetric change allows the probe to be used as a test strips to detect H2S in food spoilage, while NIR fluorescent response helps the probe monitor intracellular H2S.

3.
ACS Macro Lett ; 12(11): 1466-1471, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37856323

RESUMO

Glycine-rich proteins (GRPs) containing a high content of glycine residues (>30%) possess unique structural stability. However, the controllable synthesis of glycine-rich poly(amino acid)s (PAAs) to mimic GRPs has not been realized yet due to the poor solubility of polyglycine segments. We developed a novel method to synthesize glycine-rich PAAs via the controlled ring-opening copolymerization of glycine-N-thiocarboxyanhydrides (Gly-NTA) with sarcosine-N-carboxyanhydride and ε-Cbz-l-lysine-N-carboxyanhydride. The random copolymerization is evidenced by a kinetic study that shows that the propagation rate constant of Gly-NTA is close to those of comonomers. The copolymers exhibit predictable molecular weights between 4.5 and 24.6 kg/mol and tunable glycine incorporation, varying from 10.3 to 59.2%. Poly(Gly-r-Sar) samples with various glycine contents form nanoparticles or a hydrogel in water. Remarkably, the ß-sheet folding of poly(Gly-r-Lys) remains intact in a neutral environment where the amine groups are protonated. Overall, the strategy paves the way to engineer glycine-rich PAAs and thereby expands their applications.


Assuntos
Glicina , Sarcosina , Glicina/química , Polímeros , Lisina , Polimerização
4.
Nat Commun ; 14(1): 3524, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316490

RESUMO

High refractive index polymers (HRIPs) have drawn attention for their optoelectronic applications and HRIPs with excellent transparency and facile preparation are highly demanded. Herein, sulfur-containing all organic HRIPs with refractive indices up to 1.8433 at 589 nm and excellent optical transparency even in one hundred micrometre scale in the visual and RI region as well as high weight-average molecular weights (up to 44500) are prepared by our developed organobase catalyzed polymerization of bromoalkynes and dithiophenols in yields up to 92%. Notably, the fabricated optical transmission waveguides using the resultant HRIP with the highest refractive index display a reduced propagation loss compared with that generated by the commercial material of SU-8. In addition, the tetraphenylethylene containing polymer not only exhibits a reduced propagation loss, but also is used to examine the uniformity and continuity of optical waveguides with naked eyes because of its aggregation-induced emission feature.

5.
Org Biomol Chem ; 21(26): 5382-5386, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37338826

RESUMO

This paper describes the iron-catalyzed photochemical carbonylation of benzylic C-H bonds resulting in the synthesis of various aryl ketones. Using 5 W blue LED irradiation, the reactions proceed smoothly in the presence of 2 mol% of FeBr3 in MeOH at 35 °C. The catalytic system could be extended for the oxidation of silane, thioether, and phosphine into silenol, sulphoxide, and phosphoxide, respectively. A mechanistic study suggests that a hydrogen bond-stabilized iron-hydroperoxo species is the reactive intermediate. It is shown that the reaction proceeds via a four-electron-transfer pathway, and a benzylic cation seems to be the crucial reactive species. The method is applied for the synthesis of pomalyst, haloperidol, melperone, and lenperone.

6.
Angew Chem Int Ed Engl ; 61(46): e202213028, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36152298

RESUMO

It is significant and challenging to use CO2 to produce polymeric materials, especially with olefins. Here, a novel strategy named "scrambling polymerizations" is designed and performed for the copolymerization of a CO2 -and-1,3-butadiene-derived valerolactone, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one (EVL), with ϵ-caprolactone (CL) to prepare polyesters. Anionic ring-opening polymerization of CL and conjugated addition oligomerization of EVL take place individually to form PCL and EVL oligomers, respectively. Then EVL oligomers insert into PCL by transesterification resulting in polyester P(CL-co-EVL) with a tunable topology and composition. The non-cytotoxic and degradable polyester network with elongation at break of >600 % can be used as an elastomer. We propose a method to provide polyester elastomers from CO2 and olefins for the first time, and expand the potential of transformation from sustainable feedstocks to polymeric materials.


Assuntos
Elastômeros , Poliésteres , Polimerização , Dióxido de Carbono , Butadienos , Polímeros
7.
Materials (Basel) ; 15(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806693

RESUMO

Freeze-thaw damage is one of the most severe threats to the long-term performance of concrete pavement in cold regions. Currently, the freeze-thaw deterioration mechanism of concrete pavement has not been fully understood. This study summarizes the significant findings of concrete pavement freeze-thaw durability performance, identifies existing knowledge gaps, and proposes future research needs. The concrete material deterioration mechanism under freeze-thaw cycles is first critically reviewed. Current deterioration theories mainly include the hydrostatic pressure hypothesis, osmolarity, and salt crystallization pressure hypothesis. The critical saturation degree has been proposed to depict the influence of internal saturation on freeze-thaw damage development. Meanwhile, the influence of pore solution salinity on freeze-thaw damage level has not been widely investigated. Additionally, the deterioration mechanism of the typical D-cracking that occurs in concrete pavement has not been fully understood. Following this, we investigate the coupling effect between freeze-thaw and other loading or environmental factors. It is found that external loading can accelerate the development of freeze-thaw damage, and the acceleration becomes more evident under higher stress levels. Further, deicing salts can interact with concrete during freeze-thaw cycles, generating internal pores or leading to crystalline expansion pressure. Specifically, freeze-thaw development can be mitigated under relatively low ion concentration due to increased frozen points. The interactive mechanism between external loading, environmental ions, and freeze-thaw cycles has not been fully understood. Finally, the mitigation protocols to enhance frost resistance of concrete pavement are reviewed. Besides the widely used air-entraining process, the freeze-thaw durability of concrete can also be enhanced by using fiber reinforcement, pozzolanic materials, surface strengthening, Super Absorbent Polymers (SAPs), and Phase Change Materials. This study serves as a solid base of information to understand how to enhance the freeze-thaw durability of concrete pavement.

8.
Nanomaterials (Basel) ; 13(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616014

RESUMO

In this work, we synthesized mesoporous silica nanoparticles (MSNs) and periodic mesoporous organosilica nanoparticles containing bridging groups of ethylene (E-PMO) and phenylene (P-PMO) and compared their adsorption properties using D-limonene (Lim), myrcene (Myr), and cymene (Cym) as model guest molecules. For the selected nanoparticles of ~100 nm in diameter, the loading capacity to the volatile fragrances was in the order of P-PMO < E-PMO < MSN, consistent with the trend of increasing total pore volume. For example, P-PMO, E-PMO, and MSN had a Lim uptake of 42.2 wt%, 47.3 wt%, and 62.7 wt%, respectively, which was close to their theoretical adsorption capacity. Under isothermal thermogravimetric analysis conditions (30 °C, a N2 flow of 1 mL min−1), the lowest fragrance release of ~56% over 24 h was observed for P-PMO, followed by E-PMO (74−80%), and MSN (~89%). The release kinetics of the fragrant molecules from MSN and PMO materials can be well described by first-order and Weibull models, respectively. Moreover, the incorporation of Lim-loaded P-PMO NPs in an aqueous solution of regenerated silk fibroin provided a composite coating material suitable for perishable fruit preservation. The active layer deposited on fruit peels using dip coating showed good preservation efficacy, enabling the shelf-life of mangoes in a highly humid and hot atmosphere (30−35 °C, 75−85% RH) to be extended to 6 days.

9.
Macromol Rapid Commun ; 42(22): e2100453, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562289

RESUMO

Poly(α-amino acid)s (PAAs) attract growing attention due to their essential role in the application as biomaterials. To synthesize PAAs with desired structures and properties, scientists have developed various synthetic techniques with respective advantages. Here, different approaches to preparing PAAs are inspected. Basic features and recent progresses of these methods are summarized, including polymerizations of amino acid N-carboxyanhydrides (NCAs), amino acid N-thiocarboxyanhydrides (NTAs), and N-phenoxycarbonyl amino acids (NPCs), as well as other synthetic routes. NCA is the most classical monomer to prepare PAAs with high molecular weights (MWs). NTA polymerizations are promising alternative pathways to produce PAAs, which can tolerate nucleophiles including alcohols, mercaptans, carboxyl acids, and water. By various techniques including choosing appropriate solvents or using organic acids as promoters, NTAs polymerize to produce polypeptoids and polypeptides with narrow dispersities and designed MWs up to 55.0 and 57.0 kg mol-1 , respectively. NPC polymerizations are phosgene-free ways to synthesize polypeptides and polypeptoids. For the future prospects, detail investigations into polymerization mechanisms of NTA and NPC are expected. The synthesis of PAAs with designed topologies and assembly structures is another intriguing topic. The advantages and unsettled problems in various synthetic ways are discussed for readers to choose appropriate approaches for PAAs.


Assuntos
Aminoácidos , Peptídeos , Polimerização , Solventes , Água
10.
Adv Mater ; 33(29): e2102023, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34081366

RESUMO

Materials capable of shape-morphing and/or fluorescence imaging have practical significances in the fields of anti-counterfeiting, information display, and information protection. However, it's challenging to realize these functions in hydrogels due to the poor mechanical properties and lack of tunable fluorescence. A tough hydrogel with good shape-memory ability and phototunable fluorescence is reported here, which affords reprogrammable shape designing and information encoding for dual-encryption. This hydrogel is prepared by incorporating donor-acceptor chromophore units into a poly(1-vinylimidazole-co-methacrylic acid) network, in which the dense intra- and interchain hydrogen bonds lead to desirable features including high stiffness, high toughness, and temperature-mediated shape-memory property. Additionally, the hydrogel shows photomediated tunable fluorescence through a unimer-to-dimer transformation of the chromophores. By combining photolithography and origami/kirigami designs, hydrogel sheets encoded with fluorescent patterns can deform into specific 3D configurations. The geometrically encrypted fluorescent information in the architected hydrogels is readable only after sequential shape recovery and UV light irradiation. As demonstrated by proof-of-concept experiments, both the fluorescent pattern and the 3D configuration are reprogrammable, facilitating repeated information protection and display. The design of tough hydrogels with rewritable fluorescent patterns and reconfigurable shapes should guide the future development of smart materials with improved security and wider applications in aqueous environments.

11.
Front Chem ; 9: 645949, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855011

RESUMO

To synthesize well-defined poly (α-amino acid)s (PAAs), ring opening polymerizations (ROP) of cyclic monomers of α-amino acid N-carboxyanhydrides (NCAs) and N-thiocarboxyanhydrides (NTAs) are most widely used. In this mini-review, we summarize the mechanism details of the monomer preparation and ROP. The present study used density functional theory calculations to reveal the mechanisms together with experimental phenomena in the past decades. Detailed discussion includes normal amine mechanism and the selectivity of the initiators bearing various nucleophilic groups.

12.
ACS Macro Lett ; 10(8): 1055-1060, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35549114

RESUMO

3-Ethylidene-6-vinyltetrahydro-2H-pyran-2-one (EVL) is a disubstituent δ-lactone derived from CO2 and 1,3-butadiene. In this contribution, we report the ring-opening polymerization (ROP) of EVL with ß-butyrolactone (BBL) as the comonomer catalyzed by scandium triflate [Sc(OTf)3]. The obtained polyester bearing active unsaturated bonds has the weight-average molecular weight (Mw) of 4.1 kg/mol, in which the EVL content is 38 mol % in accordance with the initial ratio of 40 mol %. The copolymers are characterized in detail and the cationic ROP mechanism has been confirmed by kinetic study, chain end analysis and density functional theory (DFT) calculation. The modification of the unsaturated bonds in EVL repeating units via the thio-ene click reaction with mercapto-ended polysarcosine polysarcosine yields the amphiphilic grafting polymers. It is a CO2 fixation approach toward the functional poly(EVL-r-BBL) that is promising as a degradable polyester precursor for adhesive or surface-coating materials.


Assuntos
Dióxido de Carbono , Poliésteres , Poliésteres/química , Polimerização , Polímeros/química , Pironas
13.
Phys Chem Chem Phys ; 22(26): 14868-14874, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32582885

RESUMO

Polypeptides and polypeptoids are promising materials in biomedical applications bearing α-amino acid repeating units, which are prepared from ring-opening polymerizations of α-amino acid N-carboxyanhydride (NCA) or N-thiocarboxyanydride (NTA) monomers. Detailed studies on monomer synthetic routes are essential to explore new α-amino acid NCA and NTA monomers as well as the corresponding poly(α-amino acid) materials. In this contribution, density functional theory (DFT) is applied to investigate the mechanism of the Leuchs approach including two possible pathways, precursor structure and racemization in the ring-closing reaction. According to DFT calculations, pathway 2 is preferred with lower ΔG than pathway 1, and the rate-determining step is recognized as an SN2 substitution with releasing equivalent halogenated hydrocarbon, which explains our experimental observations. Racemization results from the reaction between the NTA monomer and a strong protonic acid, which can be suppressed by low temperature and short reaction time. Racemization is inhibited by steric hindrance in those NTAs of α-amino acids containing high bulkiness at the ß-carbon, such as leucine-NTA.


Assuntos
Aminoácidos/química , Oxazolidinonas/síntese química , Ciclização , Teoria da Densidade Funcional , Modelos Químicos , Estereoisomerismo , Termodinâmica
14.
Commun Chem ; 3(1): 144, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36703352

RESUMO

Synthesis of poly(α-amino acid)s bearing carboxyl groups is a critical pathway to prepare biomaterials to simulate functional proteins. The traditional approaches call for carboxyl-protected monomers to prevent degradation of monomers or wrong linkage. In this contribution, we synthesize N-carboxypentyl glycine N-thiocarboxyanhydride (CPG-NTA) and iminodiacetic acid N-thiocarboxyanhydride (IDA-NTA) without protection. Initiated by amines, CPG-NTA directly polymerizes into polyCPG bearing unprotected carboxyl groups with controlled molecular weight (2.8-9.3 kg mol-1) and low dispersities (1.08-1.12). Block and random copolymerizations of CPG-NTA with N-ethyl glycine N-thiocarboxyanhydride (NEG-NTA) demonstrate its versatile construction of complicated polypeptoids. On the contrary, IDA-NTA transforms amines into cyclic IDA dimer-capped species with carboxyl end group in decent yields (>89%) regio-selectively. Density functional theory calculation elucidates that IDA repeating unit is prone to cyclize to be the six-membered ring product with low ΔG. The polymer is a good adhesive reagent to various materials with adhesive strength of 33-229 kPa.

15.
J Phys Chem Lett ; 11(1): 303-310, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31834802

RESUMO

Aqueous electrolytes, which possess the advantages of nonflammability and high ionic conductivity for safe and sustainable energy storage systems, are restricted by their narrow potential windows due to water electrolysis. The recent study of high-voltage aqueous electrolytes has mainly focused on the molecular-level hydration structure of electrolyte salts, while the influence from subatomic-scale neutrons of the water solvent has never been considered. Here, for the first time, we report an electrochemical isotope effect in which the numerically increased neutrons in the water solvent extend the potential window of aqueous electrolytes. This effect is caused by the following factors: the lower zero-point energy of the deuterium compound, the smaller ion product, and the larger dehydration energy of heavy water. It is affected by ion species, electrolyte concentrations, and the ratio of deuterium to protium. Our finding provides the new insight into aqueous electrochemistry that the isotope in molecular water improves the performance of aqueous electrolytes.

16.
Angew Chem Int Ed Engl ; 58(43): 15478-15487, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31464086

RESUMO

Polymerizing epoxides after cyclic esters remains a major challenge, though their block copolymers have been extensively studied and used for decades. Reported here is a simple catalytic approach based on a metal-free Lewis pair that addresses the challenge. When the Lewis acid is used in excess of a base, selective (transesterification-free) polymerization of epoxides occurs in the presence of esters, while selectivity toward cyclic esters is achieved by an oppositely biased catalyst. Hence, one-pot block copolymerization can be performed in both ester-first and ether-first orders with selectivity being switchable at any stage, yielding ether-ester-type block copolymers with unlimited ordering of sequences as well as widely variable compositions and architectures. The selectivity can also be switched back and forth several times to generate a multiblock copolymer. Experimental and calculational results indicate that the selectivity originates mainly from the state of catalyst-activated hydroxy species.

17.
Biopolymers ; 110(4): e23261, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30747994

RESUMO

Polypeptoids synthesized from N-substituted glycine N-carboxyanhydrides (NNCAs) are widely applied in biological fields. The effect of side groups in NNCA polymerizations is a key to develop novel polypeptoids with complex topologies and constituents. In this work, density functional theory (DFT) calculations are employed to investigate the propagation of a series of alkyl substituted NNCAs with solvation model. According to both computational and experimental results, carbonyl addition is confirmed as rate determining step and steric hindrance is recognized as the major factor of low reactivity in ß-C branched NNCAs. However, in linear and γ-C branched case, aggregation of side groups instead of bulkiness is considered responsible for low polymerization rate.


Assuntos
Anidridos/química , Peptoides/química , Teoria da Densidade Funcional , Glicina/química , Peptoides/síntese química , Polimerização , Termodinâmica
18.
ACS Macro Lett ; 8(9): 1068-1074, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-35619449

RESUMO

The C-H activation has been a hot research area in organic chemistry, and the most difficult one is the C(sp3)-H activation. Although the C-H activation has been introduced to the research of synthetic polymer chemistry, the polymerization developed based on C(sp3)-H activation is rarely reported, which will enrich the tools for the preparation of functional polymers. In this work, palladium/benzoic acid catalyzed polymerization of internal diynes and diols through C(sp3)-H activation was successfully established. Regio- and stereoregular functional poly(allylic ether)s with 100% E-isomers and high weight average molecular weights (Mw up to 33200) were prepared in excellent yield (98%). The reaction mechanism was unveiled with the assistance of density functional theory calculations. Furthermore, the thin films of polymers display high refractive indices and low optical dispersions. The polymer containing tetraphenylethene moiety displays the aggregation-enhanced emission feature and could be used to generate 2D fluorescent photopattern. Thus, this work not only establishes a powerful polymerization based on C(sp3)-H activation, but also furnishes functional polymers for diverse applications.

19.
ACS Appl Mater Interfaces ; 10(45): 39343-39352, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30351900

RESUMO

Bioluminescence is widespread in nature such as the jellyfish, which inspires scientists to design polymer hydrogels with tunable fluorescence. However, it remains a big challenge to develop white-light-emitting hydrogels with local tunability of the fluorescent behavior. Herein, we report a white fluorescent hydrogel prepared by one-pot micellar copolymerization of hydrophilic acrylamide and hydrophobic single donor-acceptor chromophore monomer, in which the unimer and the dimer of the chromophore coexist and generate high- and low-energy emission, respectively, under excitation. The fluorescent behavior of the hydrogel can be well tuned by phototreatment or heat treatment that induces unimer-to-dimer transformation of the chromophore and thus variation of the fluorescent color from blue to white and then to yellow. The fluorescence can also be reversibly switched off by forming terpyridine-Cu2+ chelate complexes and recovered by using chelating agent to extract the Cu2+ ions out of the gel matrix. These properties afford patterning the fluorescent hydrogel, which is transparent under daylight yet shows the pattern under ultraviolet light. These patterned fluorescent hydrogels should find applications in protected message display for improved information security.

20.
Biomacromolecules ; 19(11): 4263-4269, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30257089

RESUMO

Polypeptoids are noticeable biological materials due to their versatile properties and various applications in drug delivery, surface modification, self-assembly, etc. N-Substituted glycine N-thiocarboxyanhydrides (NNTAs) are more stable monomers than the corresponding N-carboxyanhydrides (NNCAs) and enable one to prepare polypeptoids via ring-opening polymerization even in the presence of water. However, larger amounts of water (>10,000 ppm) cause inhibition of the polymerization. Herein, we discover that during polymerization hydrogen sulfide evolves from the hydrolysis of carbonyl sulfide, which is the byproduct of ring-opening reaction, and reacts with NNTA to produce cyclic oligopeptoids. The capture of N-ethylethanethioic acid as an intermediate product confirms the reaction mechanism together with density functional theory quantum computational results. By bubbling the polymerization solution with argon, the side reaction can be suppressed to allow the synthesis of polysarcosine with high molar mass ( Mn = 11,200 g/mol, D = 1.25) even in the presence of ∼10,000 ppm of water.


Assuntos
Sulfeto de Hidrogênio/química , Glicinas N-Substituídas/química , Peptídeos/química , Polímeros/química , Sarcosina/análogos & derivados , Óxidos de Enxofre/química , Água/química , Hidrólise , Polimerização , Teoria Quântica , Sarcosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...